Minimum Number of K Consecutive Bit Flips
Description
In an array A containing only 0s and 1s, a K-bit flip consists of choosing a (contiguous) subarray of length K and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.
Return the minimum number of K-bit flips required so that there is no 0 in the array.  If it is not possible, return -1.
Example 1:
Input: A = [0,1,0], K = 1 Output: 2 Explanation: Flip A[0], then flip A[2].
Example 2:
Input: A = [1,1,0], K = 2 Output: -1 Explanation: No matter how we flip subarrays of size 2, we can't make the array become [1,1,1].
Example 3:
Input: A = [0,0,0,1,0,1,1,0], K = 3 Output: 3 Explanation: Flip A[0],A[1],A[2]: A becomes [1,1,1,1,0,1,1,0] Flip A[4],A[5],A[6]: A becomes [1,1,1,1,1,0,0,0] Flip A[5],A[6],A[7]: A becomes [1,1,1,1,1,1,1,1]
Note:
- 1 <= A.length <= 30000
- 1 <= K <= A.length
Solution(javascript)
/**
 * @param {number[]} A
 * @param {number} K
 * @return {number}
 */
var minKBitFlips = function(A, K) {
    const len = A.length;
    const a = Array(len).fill(0);
    let ans = 0, flip = 0;
    
    for(let i = 0; i < len; i++){
        flip ^= a[i];
        if(A[i] === flip){
            ans++;
            if(i + K > len) return -1;
            flip ^= 1;
            if(i + K < len) a[i+K] ^= 1;
        }
    }
    
    return ans;
};