RLE Iterator
Description
Write an iterator that iterates through a run-length encoded sequence.
The iterator is initialized by RLEIterator(int[] A)
, where A
is a run-length encoding of some sequence. More specifically, for all even i
, A[i]
tells us the number of times that the non-negative integer value A[i+1]
is repeated in the sequence.
The iterator supports one function: next(int n)
, which exhausts the next n
elements (n >= 1
) and returns the last element exhausted in this way. If there is no element left to exhaust, next
returns -1
instead.
For example, we start with A = [3,8,0,9,2,5]
, which is a run-length encoding of the sequence [8,8,8,5,5]
. This is because the sequence can be read as "three eights, zero nines, two fives".
Example 1:
Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]] Output: [null,8,8,5,-1] Explanation: RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]). This maps to the sequence [8,8,8,5,5]. RLEIterator.next is then called 4 times:.next(2) exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5].
.next(1) exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5].
.next(1) exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5].
.next(2) exhausts 2 terms, returning -1. This is because the first term exhausted was 5, but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Note:
0 <= A.length <= 1000
A.length
is an even integer.0 <= A[i] <= 10^9
- There are at most
1000
calls toRLEIterator.next(int n)
per test case. - Each call to
RLEIterator.next(int n)
will have1 <= n <= 10^9
.
Solution(javascript)
/**
* @param {number[]} A
*/
var RLEIterator = function(A) {
let E = A;
let i = 0, q = 0;
this.next = function(n) {
while(i < E.length){
if(q + n > E[i]){
n -= E[i] - q;
q = 0;
i += 2;
} else {
q += n;
return E[i+1];
}
}
return -1;
};
}
/**
* Your RLEIterator object will be instantiated and called as such:
* var obj = new RLEIterator(A)
* var param_1 = obj.next(n)
*/